

MICDODIALS

Total Chlorina Dacidual (mg/l)

2012 Consumer Confidence Report

Results are from the most recent testing performed in accordance with state and federal drinking water regulations. The State allows Maywood Mutual Water Company #1 to monitor for some contaminants less than once per year because the concentrations of these contaminates do not change frequently. Some of the data, though representative, are more than one year old.

Primary Standards Monitored At The Source - Mandated For Public Health

ORGANIC	GROUN	GROUNDWATER		MWD'S SURFACE WATER		MCLG	MAJOR SOURCES IN DRINKING WATER	
CHEMICALS (µg/I)	AVERAGE	RANGE	AVERAGE	GE RANGE MCL		or PHG	WAJOR SOURCES IN DRINKING WATER	
	(a)	(a)	(a)	(a)				
INORGANICS Sampled from 2010 to 2012 (b)								
Aluminum (mg/l)	ND	ND	0.12	ND	1	0.6 (c)	Erosion of natural deposits; residue from surface water treatment processes	
Arsenic (μg/I)	ND	ND	ND	ND	10	0.004	Erosion of natural deposits; glass/electronics production wastes; runoff	
Barium (mg/l)	0.12	ND - 0.17	ND /	ND	1	2 (c)	Oil drilling waste and metal refinery discharge; erosion of natural deposits	
Fluoride (mg/l) (I)	0.49	0.43 - 0.60	0.80	0.4 - 1.1	2.0	1 (c)	Erosion of natural deposits; water additive that promotes strong teeth	
Nitrate (mg/l as NO3)	3.00	ND - 4.6	ND	ND	45	45 (c)	Runoff and leaching from fertilizer use/septic tanks/sewage, natural erosion	

RADIOLOGICAL - (pCi/l) Analyzed 4 consecutive quarters every 4 years (results are from 2008 to 2012) (b)										
Gross Alpha	1.6	0.4 - 2.8	R 1	ND - 3.0	15 (e)	0	Erosion of natural deposits			
Gross Beta	NA	NA	1.3	ND - 6.0	50 (e)	0	Decay of natural and man made deposits			
Radium 226	0.1	0.09 - 0.15	ND	ND	5 (d)	0.05	Erosion of natural deposits			
Radium 228	0.2	0.01 - 0.42	ND	ND	3 (u)	0.019	Erosion of natural deposits			
Uranium	22	22	17	ND - 2.0	20 (e)	0.43 (c)	Erosion of natural deposits			

Primary Standards Monitored In The Distribution System - Mandated For Public Health

DISTRIBUTION SYSTEM

	DISTRIBU	PRIMARY	MCLG		
MICROBIALS	AVERAGE # POSITIVE	RANGE OF # POSITIVE	MCL	or PHG	
Total Coliform Bacteria	0	0-1	< 1 positive	0	Naturally present in the environment
Fecal Coliform and E. Coli Bacteria	0	0	0	0	Human and animal fecal waste
No. of Acute Violations	0	0			
·				THE PERSON NAMED IN	

WICKOBIALS	AVERAGE	KANGE			
Turbudity (NTU)	0.5	<0.1 - 5.8	TT	-	Soil runoff
		A			
DISINFECTION BY-PRODUCTS	DISTRIBU	TION SYSTEM	PRIMARY	MCLG	
AND DISINFECTION RESIDUALS (f)	AVERAGE	RANGE	MCL	or PHG	
Total Trihalomethanes - TTHMS (µg/l)	29.5	3.2 - 50.4	80		By-product of drinking water chlorination
Haloacetic Acids (µg/l)	11.9	ND - 16.8	60		By-product of drinking water disinfection

Total Chlorine Residual (mg/l)	0.8	0.1 - 2.8	4.0 (9)	4.0 (n)	Drinking water disinfectant added for treatment
AT THE TAP	DISTRIBU				
PHYSICAL CONSTITUENTS 24 sites sampled in 2010	90%ile	# OF SITES ABOVE THE AL	ACTION LEVEL (AL)	MCLG or PHG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Copper (mg/l)	ND (i)	0	1.3 AL	0.3 (c)	Internal corrosion of household plumbing, erosion of natural deposits
Lead (µg/I)	ND (i)	0	15 AL	0.2 (c)	Internal corrosion of household plumbing, industrial manufacturer discharges

Secondary Standards Monitored At The Source - For Aesthetic Purposes

Sampled From 2010 to 2012 (b)	Sampled From 2010 to 2012 (b) GROUNDWATE		MWD's SURFACE WATER		SECONDARY	MCLG	
Campica From 2010 to 2012 (2)	AVERAGE	RANGE	AVERAGE	RANGE	MCL	or PHG	
Aggressiveness Index (corrosivity)	12	12	12.1	11.9 - 12.2	Non - corrosive		Natural / industrially - influenced balance of hydrogen / carbon / oxygen in water
Aluminum (µg/l) (j)	ND	ND .	118	ND - 340	200	600 (c)	Erosion of natural deposits, surface water treatment process residue
Chloride (mg/l)	54.3	51 - 56	78.7	50.0 - 95.0	500	-0	Runoff / leaching from natural deposits, seawater influence
Color (color units)	2.9	ND - 15	1.3	1.0 - 2.0	15	and the	Naturally - occurring organic materials
Specific Conductance (uS/cm)	695	670 - 710	653.3	350 - 930	1,600	100	Substances that form ions when in water, seawater influence
Iron (µg/l)	63.9	ND - 160	ND	ND	300	1-	Leaching from natural deposits; industrial wastes
Manganese (µg/I)	59.9	25 - 89 (K)	ND	ND	50	1-3	Leaching from natural deposits
Odor (threshold odor number)	0.7	ND - 1	2.0	2.0	3	-	Naturally - occurring organic materials
Sulfate (mg/l)	110	100 - 120	116	46.0 - 160	500	- 3	Runoff / leaching from natural deposits, industrial wastes
Total Dissolved Solids (mg/l)	447.5	440 - 470	410	240 - 500	1,000	A CONTRACTOR OF THE PARTY OF TH	Runoff / leaching from natural deposits
Turbidity (NTU)	0.9	0.21 - 1.7	ND	ND - 0.1	5		Soil runoff

Secondary Standards Monitored In The Distribution System - For Aesthetic Purposes

GENERAL	DISTRIBU	TION SYSTEM	SECONDARY	MCLG	
PHYSICAL CONSTITUENTS	AVERAGE	RANGE	MCL	or PHG	
Color (color units)	13.1	<3 - 35	15	- 4	Naturally - occurring organic materials
Odor (threshold odor number)		1.0 - 3.0	3	1	Naturally - occurring organic materials

Additional Chemicals Of Interest

Sampled From 2010 to 2012 (b)	GROUNI	OWATER	MWD's SURFACE WATER		
Sampled From 2010 to 2012 (b)	AVERAGE	RANGE	AVERAGE	RANGE	
Alkalinity (mg/l)	165	160 - 170	91	53 - 120	
Boron (µg/l)	175	170 - 180	143	130 - 170	
Calcium (mg/l)	67.3	59 - 77	40	23 - 53	
1,4-Dioxane (µg/I) (m)	1.4	1.3 - 1.5	NA	NA /	
Magnesium (mg/l)	16.0	15 - 17	17.3	11 - 21	
N-Nitrosodimethylamine (µg/l)	NA	NA	0.001	ND - 0.005	
pH (standard unit)	7.7	6.5 - 8.2	8.2	7.9 - 8,6	
Potassium (mg/l)	3.5	3.4 - 3.8	3.4	2.3 - 4.1	
Sodium (mg/l)	51.3	48 - 54	68.7	43 - 82	
Total Hardness (mg/l)	230	210 - 250	170	80 - 270	
Total Organic Carbon (mg/l)	NA	NA	2.2	1.7 - 2.7	

Abbreviations

uS/cm = microSiemens per centimeter NA = constituent not analyzed ND = constituent not detected at the reporting limit NTU = nephelometric turbidity units

< = less than • SI = saturation index • pCi/I = picoCuries per liter

mg/I = milligrams per liter or parts per million (equivalent to 1 drop in 42 gallons) µg/l = micrograms per liter or parts per billion (equivalent to 1 drop in 42,000 gallons) ng/l = nanograms per liter or parts per trillion (equivalent to 1 drop in 42,000,000 gallons)

Footnotes

- (A) Over 50 regulated and unregulated organic chemicals were analyzed. None were detected at or above ne reporting limit in groundwater or surface water sources.
- (B) Indicates dates sampled for groundwater sources only.
- (C) California Public Health Goal (PHG). Other advisory levels listed in this column are federal Maximum Contaminant Level Goals (MCLGs).
- (D) Combined Radium 226 + Radium 228 has a Maximum Contaminate Level (MCL) of 5 pCi/L
- (E) MCL compliance based on 4 consecutive quarters of sampling.
- (F) Running annual average used to calculate average, range and MCL compliance
- (G) Maximum Residual Disinfectant Level (MRDL). esidual Disinfectant Level Goal (MRD
- (I) 90th percentile from the most recent sampling at selected customer taps
- (J) Aluminum has primary and secondary standards.
- (K) The secondary MCL for manganese was exceeded in one of two wells in 2012. Manganese has been detected at elevated levels since 1995 and has been monitored monthly or quarterly since. Groundwater is blended with surface water before delivery to the customer, which dilutes the amount of manganese actually reaching the tap. Manganese samples taken weekly in the distribution system averages well below regulatory limits. The manganese secondary MCL is set to protect against unpleasant effects such as color, taste, odor, and staining of laundry / plumbing fixtures. A manganese secondary MCL exceedance DOES NOT POSE A HEALTH RISK.
- (L) MWD started adding flouride at each treatment plant in fall 2007. MWD was in compliance with the
- (M) The Notification Level of 1µg/l for 1,4-Dioxane was exceeded in one well in 2012. Some people who use water containing 1,4-dioxane in excess of the Notification Level over many years may experience liver or kidney problems and may have an increased risk of getting cancer, based on studies in laboratory animals

Definitions

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidance that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Primary Drinking Water Standard (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Water Standard (SDWS): MCLs and MRDLs for contaminants that affect the aesthetic qualities such as taste, odor, or appearance of the drinking water. Contaminates with SDWSs do not affect the health at the MCL levels. Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions.